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ABSTRACT 

In Enhanced Geothermal System (EGS) projects, high pressure injection of cold water is conducted with the aim to artificially enhance 

in-situ permeability. Assessing the spatial distribution of this permeability enhancement is critical in an EGS setting, as it indicates the 

success of these stimulation operations, and gives valuable information for future development of the project. Such stimulations 

typically induce large seismicity clouds, the origin of those micro-earthquakes being mainly attributed to sliding along preexisting 

cracks caused by pore pressure increase. Therefore, the distribution and intensity of the microseismicity cloud makes it possible to track 

fluid pressure evolution, which in turn reveals aspects of the permeability distribution and its enhancement. 

Using this idea, we develop a method to invert permeability development based on the distribution of seismicity in a 2D plane, allowing 

for simulation of non-azimuthal symmetry. We design a permeability assignment model where each node has its own semi-independent 

permeability regime. The density of earthquake hypocenters is derived from the pressure distribution obtained from a flow simulator. 

An inverse problem is set up in which a synthetic permeability enhancement regime is created and which we then attempt to recover 

from simulated microseismicity, accounting for both location and Poisson errors.  

While the inversion successfully recovers much of the true permeability regime, we find that the inclusion of post-stimulation seismicity 

is critical to constrain hydrological conditions in the final moments of the stimulation. We also note that the presence of uncertainties in 

the earthquake observations leads to a discrepancy between the best fitted model and the real parameter set the parameter set; the range 

of valid solutions should be chosen carefully. Overall the proposed method is able to constrain the spatial distribution of permeability 

enhancement. 

1. INTRODUCTION 

During the 2003 Habanero#1 stimulation, in South Australia, 20,000 m3 of water were injected into granitic basement at a depth of 4.25 

km with the goal of creating an enhanced geothermal reservoir (Baisch et al., 2006). To assess the success of this operation, two sets of 

data are available: injection parameters (Figure 1), and a microseismicity catalog comprising 10,436 located microearthquakes (MEQs) 

(Figure 2). From these data, we seek to develop a method that can derive the where and at what rate permeability around the well was 

enhanced. 

Injectivity, the ratio of injection flow rate to wellhead pressure, gives an estimate of the timing of permeability enhancement. During the 

Habanero stimulation, for the first two constant-rate injection steps, injectivity decreased with time, as is expected in the case that no 

permeability or porosity changes are occurring. However, from the third step, injectivity stabilizes and stays constant even though 

injection is continued at higher flow rates. This suggests that some permeability enhancement is occurring in such a way that the ability 

of the formation to take fluid remains constant in spite the increasing amount of fluid injected. However, injection parameters on their 

own do not uniquely constrain the spatial distribution of the permeability evolution. 

A microseismicity catalog is composed of a list of MEQs, each attached to a location and an occurrence time. Its spatiotemporal nature 

makes it a valuable information source to study the stimulation process. For example, during the Habanero stimulation, it was noticed 

that the cloud developed with a planar shape (Figure 2), suggesting the existence of a planar structure directing the spread of the injected 

fluid. Indeed, induced seismicity is usually attributed to hydroshearing, the shear failure of existing fractures as a result of fluid pressure 

increase (Pearson, 1981). Moreover, as the same process can potentially increase permeability through the created mismatch between 

the two surfaces of the sheared fracture, the idea that the seismically active volume is representative of the stimulated volume has been 

popularized (Weidler et al., 2002). However, at least in Habanero, this does not seem to be the case, as there was a considerable amount 

of seismicity registered during the first two steps of injection (Figure 2), whereas injectivity evolution did not indicate any significant 

permeability enhancement (Figure 1). 

But if seismic triggering is primarily an indicator of pressure increase, this means that it is possible to recover the spatiotemporal 

distribution of fluid overpressure. From the pressure distribution, we can invert the permeability distribution. This idea has been already 

investigated by several research groups. In Shapiro et al. (2005) the rate at which induced seismicity spreads away from a wellbore is 

used to obtain hydrological properties of the reservoir. In Tarrahi and Jafarpour (2012) a method is presented to invert rock permeability 
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distribution from the distribution of the microseismicity cloud using the ensemble Kalman filter. To our knowledge, this method was not 

applied to a permeability distribution evolving in time. The dataset of the 2003 Habanero stimulation was used in Dempsey et al. (2016), 

where a high permeability structure around the well was revealed from the distribution of the induced seismicity cloud.  

 

Figure 1: Injection parameters for the 2003 Habanero stimulation 

 

Figure 2: Induced seismicity distribution recorded during the 2003 Habanero stimulation 

Similarly, in this paper we use the induced seismicity distribution as a proxy for pore pressure, enabling us to recover permeability 

changes. A first version of the method presented here was developed for the 2011 Paralana stimulation (Riffault et al., submitted). In 

that study, a 1D radial model was assumed, whereas here we generalize the study to handle 2D planar models. This is in an attempt to 

capture azimuthal asymmetry in the reservoir development. From Riffault et al. (submitted), it was concluded that, for the Paralana 

stimulation, permeability enhancement was limited to volumes immediately adjacent to the wellbore, and that the stimulated volume 

represented only a small fraction of the seismically active volume. 

Here, we wish to demonstrate the feasibility of a 2D permeability enhancement inversion. First we detail the simulation workflow, from 

the permeability assignment model to the generation of seismicity. Then we set up an inversion problem that attempts to recover a 
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synthetic permeability evolution regime from pressure and seismicity observations alone. Observation errors are simulated and 

accounted for by the workflow. The goal is to develop a proof of concept, identify possible pitfalls and failures of the method, before it 

is applied to real dataset. As such, a simple model is used with a fewer number of nodes and parameters than intended for real-world 

applications. 

2. TWO DIMENSIONAL MODEL 

We model the propagation of injected fluid within a 2D injection plane. In contrast to other approaches, permeability at every 

discretized node and every time step is prescribed, rather than a function of the simulation variables (e.g., temperature, pressure or 

stress). The intent is that our inversion will reveal the spatiotemporal nature of permeability enhancement unconstrained by modeler bias 

in regards to the physical mechanisms.  

Fluid flow and heat transfer during injection of cold water are modelled in the reservoir simulator FEHM (Zyvoloski 2007), which uses 

the control volume method. We use a simple 7x7 node grid, where each node is associated with a 200x200x20 m3 volume (Figure 3). 

Injection occurs in the center node at a constant flow rate of 1.2 kg.s-1 and a temperature of 100°C, in a reservoir at 60 MPa and 220°C, 

similar to the conditions found at the Habanero EGS site (Baisch et al. 2006). The injection lasts for 24 hours. 

2.1 Permeability Model Construction 

There are an infinite number of possibilities for constructing a permeability evolution scenario. We introduce several constraints that, 

while not strictly always correct, nevertheless seem reasonable simplifications: (i) at all times during the stimulation, permeability 

should be higher the closer one is to the injection node; and (ii) as few parameters as possible should be employed. These restrictions 

lead to a much simpler inversion process. Indeed, without the first constraint, permeability at the edges of the model would be much 

harder to recover, as it has almost no impact on the way in which fluid spreads throughout the domain. 

We use a simple model where permeability, κi, at node, i, and time t, is given by:    
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where κ0,i, κ1,i, ti, tmax are, respectively, initial permeability, final permeability, time of first permeability enhancement, and simulation 

end time. We assume an isotropic permeability. Here, κ always refer to the logarithm in base 10 of the permeability in m2.  For each 

node, i, the three parameters can be different, and the permeability evolution scenario of the whole model is described by the matrix κ: 
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where Nnodes is the number of nodes in the model. However, the components of κ are not independent, because of our self-imposed 

condition that permeability must always be higher nearer to the wellbore. To make sure this condition is respected, we design a system 

where each node, i, has a rank, Ri, attached as presented on Figure 3. Ranks are used to direct the sequence by which local permeability 

parameters are assigned. Before presenting the permeability assignment method, we first require the definition of two sets of parameters 

on which κ depends: 0, 0,, , ,min max d t     Θ , which bounds the values of κ over the whole model, and    
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which controls permeability interdependencies between neighboring nodes. For 0R  , at the injection node, we define 

0, 0, 1, 0,, ,i max i max id t t        . This explains why ψ is of dimension  1 3nodesN   and not 3nodesN  as κ is, 

because for the injection node the permeability parameters do not depend on ψ. For 0R  , considering the directly neighboring node 

with the highest  κ0,j,  j, we have: 
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Thus the dependency of κ with Θ and ψ is complete, and our self-imposed constraint dictating that permeability will always be higher 

as we get closer to the injection node is respected. 

 

Figure 3: 2D model sketch and ranks, R, used for permeability assignment model. 

Inevitably, the design of our permeability model introduces some bias. Permeability will tend to converge quickly towards κ0,min at the 

boundaries of the domain. Also, the rank system prevents certain patterns from appearing, such as larger permeability further away from 

the wellbore than closer, or convoluted permeability evolution scenarios. However, this design can be viewed as a regularization term: 

we expect permeability in the volumes close to the wellbore to reach higher values than further away. This design is a reasonable 

tradeoff that allows us to reduce the number of possible permeability models, thereby increasing the efficiency of the inversion process. 

2.2 Injection Pressure and Hypocenter Density 

With the permeability evolving as prescribed by Θ and ψ, the pressure, P, at the injection node is simulated at every time step. To 

simulate induced seismicity, we first need to define a meaningful measure of seismic activity, accounting for its discrete and aleatoric 

nature. Instead of considering each event independently, we compute the cumulative number of events within volumes, averaging over 

the heterogeneities. Following Dempsey et al., 2016, we obtain the spatiotemporal distribution of hypocenter density, n, defined as the 

total number of earthquake hypocenters occurring per unit of area of the injection plane prior to time, t. Its calculation is detailed in 

Section 3.1. This variable has been shown in Dempsey et al., 2016 to be a good proxy for pore pressure changes, thus able to reveal 

underlying physical changes responsible for seismicity triggering.  

With our simulation, we obtain the pressure difference ΔPi caused by the injected fluid at every node and every time step. The 

assumptions that hypocenter density and pressure difference follow a linear relationship allow us to estimate the number of earthquakes 

generated in the volumes associated to each of those nodes. For this, an additional parameter set is required,  ,Δ critk PΦ .  
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We assume that k and ΔPcrit are constant over the spatial domain considered. However, we should also account for the Kaiser effect, 

which suggests that the cumulative hypocenter density depends on the maximum pressure change observed in the volume associated 

with node, i, at any precedent time (Baisch et al., 2006). Thus, Equation 5 becomes:  



Riffault et al. 

 

 

 

5 

 

    

0

0 0

                                           ,
( )

,  ,      

0, max   ..,

max   .. max   ..,             

i crit

i

i crit i crit

P t t P

k P t t P P t t P
n t

    

        



 






   

 (6) 

where t0 is the starting time of the simulation. Thus we obtain n, the hypocenter density values, at every time step and every node. Both 

n and P are functions of the parameter vector  , vec ,   Ω Θ Ψ Φ , and their computation is an entirely deterministic process. 

3. INVERSION METHOD 

Here, we define a set of true permeability parameters and use this as an input to our simulation framework to obtain pressure and 

induced seismicity distributions. This becomes a synthetic dataset. Then, we attempt to recover the true parameters using only the 

synthetic data, accounting for the impact of simulated uncertainties in the observations. Through integration of those simulated 

uncertainties, we produce the observations, different from the synthetic dataset. We wish to understand if the inversion procedure can 

successfully recover a sufficient range of permeability regimes that a good enough fit to the synthetic observations is achieved. 

Throughout this section, we will use the following nomenclature, with the example of the hypocenter density distribution, where n , n

,
*n ,  n ,

minn ,
maxn are, respectively, the synthetic dataset, the observations, the best-fit (maximum likelihood) values obtained 

through inversion, the ensemble obtained from inversion satisfying a goodness of fit criterion, the minimum, and maximum values for 

the ensemble. While n* (and P* ) are associated with a set of parameters, Ω*, nmin and nmax are not. Instead, they regroup the extreme 

value of the ensemble of parameters [Ω]. Similarly, Ωmin and Ωmax are not elements of [Ω], they are its extreme values for each 

component. 

3.1 Synthetic Data 

According to our permeability model, we choose the true values Ω  for our synthetic model. Θ  and Φ values are given in Table 1.  

Table 1: parameter values of Θ and Φ for the synthetic dataset and prior distribution 

Parameters True value Minimum value Maximum value 

Minimum initial permeability, κ0,min [log(m2)] -16 -17 -15 

Maximum initial permeability, κ0,max [log(m2)] -14 -15 -13 

Permeability change, dκ [log(m2)] 2.0 1 3 

Time of permeability enhancement start, tκ [days] 0.5 0 1 

Proportionality factor for MEQs triggering, k, [MEQs km-2 MPa-1] 200  0 400 

Critical pressure change, ΔPcrit [MPa] 0.2 0 0.4 

 

The values of Ψ are generated randomly, considering a uniform permeability distribution between 0 and 1 for each component. Using 

our simulator, we obtain n and p . In a real life situation, while we can obtain reliable measurement of pressure changes at the injector, 

hypocenter density distribution is trickier. To emulate a real dataset, we generate a catalog of events using n and from it derive an 

observed hypocenter density distribution, n . In this process, we include a location and Poisson error, which means that n n . The 

Poisson distribution models the intrinsic aleatoric component of earthquake triggering (Langenbruch et al. 2011). We generate a number 

of MEQs NMEQ,i at a node, i, at time t+dt following a Poisson process, according to: 

   
0
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For each MEQ, a time is assigned randomly following a uniform distribution in  , t t dt . Spatially, each MEQ is assigned a position 

randomly following a uniform distribution within the volume associated with the node, i. In addition, a normal distribution of mean, μ = 
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0 and standard deviation, σr, is used to represent the location error, which is added along both the x and y axis. As for the other 

parameters, σr is considered constant within the studied domain. Thus we obtain a list of earthquakes, with each event being associated a 

time and location within the plane of injection. This simulates the MEQ catalog that would be recorded for a certain permeability 

evolution scenario, incorporating both location and Poisson uncertainty. The value of k was selected in order to obtain a similar number 

of MEQs in our catalog as observed in Habanero, 10,436. The location error σr is the same as the relative location error in Habanero, 2 

m. 

Now, effort must be made to recover a hypocenter density temporal and spatial distribution based on this catalog. The first step is to 

assign for each event m the probability to be within a bin, i, of surface, S, in order to consider location uncertainty.  For an event with 

position , m mx y , its probability to be within the bin i is pm. Considering the bin delimited along the x axis by  0 1, x x , the 

component of pm along the same axis, px,m is: 
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py,m is calculated in the same way, and thus we have , ,m x m y mp p p . At a specific time, t when Nt events occurred in total, in a 

bin, i, we have a Poisson binomial distribution, where each event, m has a probability, pm of occurring in this bin. The probability of  

j=0,..,Nt events to have occurred in the bin, i at the time, t is Pl(k=j). The mean of this distribution is 

1

tN

l mp  , and its variance is

 2

1

1
tN

l m mp p   . Location uncertainty is thus considered, but not Poisson uncertainty. Indeed, when we generate our 

earthquake catalog, a Poisson distribution is introduced to simulate the random nature of earthquakes, and this must be taken in account 

when reconstructing the hypocenter density distribution. For each j in 0,..,Nt we consider a Poisson distribution weighted by Pl(k=j). We 

obtain a new, larger distribution, and, when dividing by the area of the bin, i, is centered on 
in  and has a standard deviation of 

,n i . 

Thus from n  we obtain n  and 
n . This is a stochastic process, for which each realization will give a different outcome. While n is 

the hypocenter density distribution which reflects the set of parameter Ω , n does not accurately, as it is skewed by the inclusion of 

uncertainties. 

3.2 Genetic algorithm 

Because of the large number of parameters, a genetic algorithm is chosen for the inversion process (Schmitt, 2001). A population of 

individuals, each defined by its genotype, Ω, is evolved toward a better solution. All parameters are normalized in the [0, 1] interval. 

The evaluation of the fitness of each individual is done through the calculation of an objective function, θ(Ω). We add the square 

difference for injection pressure with the Chi-square misfit for hypocenter density: 

       
2 2

2

1

n

P P w n n


    Ω Ω Ω     (9) 

where w is a weight arbitrarily set to ensure a good balance between the fit to wellbore pressure and the fit to the hypocenter density 

distribution. Our investigations shows w=2 to provides satisfying performance, considering our number of observation points. Because

n n , the objective function    Ω  is not null, we find  = 0.23. 

The inversion is an iterative process, with the population of each iteration called a generation. To form a new generation, a set of 

individuals from the previous generation is selected stochastically based on their fitness, and their genotype are mutated and 

recombined. We used a two points crossover as our recombination methods, with each pair of individuals having a 50% chance to 

generate an offspring in this fashion. To mutate genotypes, each individual has a 20% chance of seeing a random normal distribution of 

mean σ = 0 and standard deviation (the mutation rate) μ = 0.02 applied to its genotype. We make sure that parameters stay within their 

[0, 1] bounds. 

The mutation rate is the only parameter where some experimental variation is conducted. While a larger mutation rate gives a faster 

convergence for models far from the global optimum, convergence is much slower as we get closer to the optimum. The mutation rate 

also impacts how far from the located best fit the parameter ensemble spreads, as with a smaller mutation rate the parameter range will 
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be much more concentrated around the minimum. The mutation rate is thus important to balance in order to obtain quick convergence 

and an ensemble of parameters of a satisfying size. 

For a 49 node model, we have 150 parameters in Ω. For our initial population of 400 individuals, each individual had its parameters 

assigned randomly according to a uniform distribution, in [0, 1] for ψ, and within the bounds provided in Table 1 for Θ and Φ. Our goal 

is not only to find the global optimum, but also to find a range of possible parameter sets [Ω] with a good enough fit, with the real 

parameter set Ω  included within this range. We arbitrarily set the goodness of fit criterion as models for which 
*2  . 

4. RESULTS 

For this inversion, 2600 generations are computed. The minimum objective function value obtained, θ*=0.18, is less that for   (Figure 

4). The inversion converges to a set of parameter which gives a better fit to the observations than a model with the real set of parameter, 

because it attempts to recreate the hypocenter density distribution n  instead of n . Accordingly, the difference between n  and 
*n  is 

almost always smaller than the difference between n  and n  (Figure 6). This is a good demonstration that the parameter vector which 

gives the best fit in a calibration is not a sufficient result, as it will always be different from the true parameters. For pressure, we do not 

have such concerns, as we assume P P , or that perfect measurement is possible, and the fit is quite satisfying (Figure 5). 

 

Figure 4:Objective function ensemble (pink) values for each generation over the course of the inversion.  

 

Figure 5: Pressure evolution with time for synthetic data and inverted set of parameters. 

With θ* > 0, the fit is not perfect. However, as n  is derived from n  with the inclusions of uncertainties, we do not know if a set of 

parameter Ω exists which would produce a perfect fit to n  and P . Thus we cannot be certain to have found the global optimum in the 

parameter space studied. 

For our criterion of “good enough” fitting parameter sets, we obtain 364,671 models with 𝜃 < 2𝜃∗ = 0.36. Because �̅� is inferior to 2𝜃∗, 

if the parameter ensemble is complete, Ω  should be within [Ω], and thus each of its values should be within Ωmin and Ωmax. This is the 

case for ψ, and even with the inclusion of Poisson and location uncertainties, both k and ΔPcrit are well constrained by the inversion 

(Figure 8). For the permeability scaling parameter vector Θ, this is not true for three of the four parameters. However, because of the 

large number of permeability parameters and our complex permeability assignment model, it is more than likely that there is a lot of 

overlap between parameter impacts on the diffusion regime. Indeed, even with an ensemble of 364,671 models, this is not enough to 

discover every possible combination of the 146 parameters that result in similar permeability evolution scenarios. To better study the 

inclusion of the true parameters in the ensemble, it is more judicious to look at the permeability values at different times at each node. 

We find that   is always included within κmin and κmax during most of the simulation, with the exception of t=1 day. Final simulation 

time aside, because the permeability difference between κmin and κmax is relatively small, we conclude that the inversion has converged 
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towards a single permeability enhancement regime, with multiple scenarios possible representing small variations of this regime. The 

true scenario is also a variation of this regime. 

 

Figure 6: Difference with observed seismicity at each node at five different times for four different datasets: true seismicity,  

best fit, minimum values, maximum values 

Thus, while Ω  is not included in the ensemble [Ω], the permeability evolution scenario it describes for most of the simulation duration 

is. However, the inclusion of Ω  is a necessary but not sufficient condition to affirm that the ensemble of parameters, [Ω] is complete, 

as we cannot discard the existence of other regimes fitting the observations missed by the inversion. 

While permeability models for each node are remarkably well constrained from 0 days to 0.75 days, this is not the case for the 

permeability distribution at t=1 day (Figure 7). This is because of the inertia between permeability changes and pressure response (and 

subsequent seismicity). As we do not model pressure and hypocenter density changes after t=1 day, there is no information available to 

the inversion process to constrain permeability at this time, hence permeability estimation for the final time contains greater error. 
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Figure 7: Permeability spatial distribution at five different times for four different datasets: synthetic data, best fit, minimum 

values, maximum values 
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Figure 8: Distribution of inverted parameters compared to the true values 

5. CONCLUSIONS 

In this paper, we have presented a new method to obtain the permeability enhancement distribution from an induced seismicity cloud. 

The use of a synthetic data set provides a first validation of the method’s potential, as well as some insight into its limitations. 

A permeability distribution was successfully inverted except for the last time steps of the simulation. This is because of the inertia 

between permeability increase and pore pressure response. For future applications, this means that post-stimulation induced events 

should be included to invert with more accuracy permeability changes happening at the end of the injection phase. 

Because of the uncertainties engendered by the aleatoric component of earthquakes, as well as in the localization process, the 

hypocenter density distribution observed is different from the one exactly reflecting permeability changes. This means that the best 

fitted model is different from the real dataset and a large subset of parameters producing a “good-enough” match is thus more 

interesting than the best-fit model. Quantifying uncertainties can help set the criterion to select the range of those models. 

The objective with such algorithm that produces a range of possible scenarios instead of the absolute minimum is to obtain the complete 

set of parameters combination satisfying a goodness of fit criteria. Because of the large number of parameters, completeness of the 

parameter distribution was not achieved even with a simple synthetic problem. However, when looking at the produced permeability 

distributions, a single permeability enhancement regime was identified, which contains the true scenario (except for the final time steps 

of the simulation as explained before). Thus, the inversion is reasonably successful. 

The inversion process is much easier when the functional form of the permeability assignment model is assumed to be known. In this 

problem, we artificially eliminated structural error, and considered only observation error. To use our method on real datasets, as for 

example the 2003 Habanero stimulation, we should consider greater flexibility in our permeability model to avoid such structural error 

jeopardizing the quality of the inversion. However, completeness in the permeability assignment model is inherently unobtainable, as 

this would require an infinite number of parameters, and we could never discard the possibility that structural error is not influencing 

our results. Therefore, there will always be a balance between the efficiency of the inversion and the range of permeability enhancement 

regimes considered. 

The use of this method with real datasets will give insight into the reservoir development process in EGS stimulation and the extent of 

the engineered reservoir. It could potentially shed light on the primary driving mechanisms responsible for permeability development. In 

Habanero, there are two suspects: hydroshearing and thermal effects. Both reactivate existing cracks through the reduction of the 

effective stress, hydroshearing through pressure increase, thermal effects through rock cooling. Because pressure and temperature are 

modelled, if we obtain a picture of the permeability development regime, we can quantify how it couples with each of those variables, 

and weigh the dominance of each mechanism against the other. 

AKNOWLEDGEMENTS 

This work was funded by the Center for Space and Earth Science at Los Alamos National Laboratory. 



Riffault et al. 

 

 

 

11 

REFERENCES 

Dempsey, D., Barton, C. and Catalinac, A.: Density of Induced Earthquake Hypocenters as a Proxy for Pore Pressure Increase during 

Well Stimulation, Proceedings, 50th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association 

(2016). 

Baisch, S., Weidler, R., Vörös, R., Wyborn, D. and de Graaf, L.: Induced seismicity during the stimulation of a geothermal HFR 

reservoir in the Cooper Basin, Australia, Bulletin of the Seismological Society of America, 96(6), (2006), 2242-2256. 

Langenbruch, C., Dinske, C. and Shapiro, S.A.: Inter event times of fluid induced earthquakes suggest their Poisson nature, Geophysical 

Research Letters, 38(21), (2011). 

Pearson, C.: The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low 

permeability granitic rocks, Journal of Geophysical Research: Solid Earth, 86(B9), (1981), 7855-7864. 

Riffault, J., Karra, S., Archer, R. and Dempsey, D.: Microseismicity cloud can be substantially larger than the associated stimulated 

fracture volume: the case of the Paralana Enhanced Geothermal System, Journal of Geophysical Research: Solid Earth, 

(submitted). 

Schmitt, L.M.: Theory of genetic algorithms, Theoretical Computer Science, 259(1-2), (2001), 1-61. 

Shapiro, S.A., Rentsch, S. and Rothert, E.: Characterization of hydraulic properties of rocks using probability of fluid-induced 

microearthquakes, Geophysics, 70(2), (2005), F27-F33. 

Tarrahi, M. and Jafarpour, B.: Inference of permeability distribution from injection‐induced discrete microseismic events with kernel 

density estimation and ensemble Kalman filter, Water Resources Research, 48(10), (2012). 

Weidler, R., Gérard, A., Baria, R., Baumgärtner, J. and Jung, R.: Hydraulic and micro-seismic results of a massive stimulation test at 5 

km depth at the European Hot-Dry-Rock test site, Soultz, France, Proceedings, 27th Workshop on Geothermal Reservoir 

Engineering, Stanford University, Stanford, CA (2002). 

Zyvoloski, G.: FEHM: A control volume finite element code for simulating sub-surface multi-phase multi-fluid heat and mass transfer, 

Los Alamos Unclassified Report, (2007), LAUR-07-3359. 

 

 


